Wireless technology is a stone soup of acronyms, jargon, numbers, and marketing gibberish that the industry likes to boil down into terms like "4G," the technology used by today's phones. (It's also known as LTE, which stands for "long-term evolution"—as if that clarifies anything.) Now tech companies are talking about 5G, and Qualcomm has announced its first 5G modem chip, the Snapdragon X50, for phones and other gadgets. No surprise: 5G will be faster than 4G. But it will also bring tens or even hundreds of billions of new devices online.

Yes, the new standard will download apps and web pages way faster, and allow higher-resolution video streaming that doesn't stutter. But it could also create a whole new connected world. Realistic scenarios include fleets of delivery drones flying in formation, tens of billions of wireless sensors constantly measuring every aspect of our planet, and a doctor on one side of the planet controlling a robotic scalpel on a patient on the other side. It could also finally kill landline broadband, cutting one more cord into the house or office.

This isn't just speculation about future scenarios; some of it's already happening. "5G is still based on LTE concepts," says Akshay Sharma, who tracks wireless tech for research firm Gartner. Many tricks that engineers are doing with 4G/LTE, like loading phones up with extra antennas to goose speed, will be the foundation of 5G.

Qualcomm's new X50 chip is an educated guess to get the process of 5G implementation going.

"New technology is essentially a gradient, a consolidation of many steps on the old technology," says Serge Willenegger, an engineer and VP for product management at Qualcomm. (His name is on over 50 wireless tech patents.) The Snapdragon X50 modem includes the new 5G technologies Willenegger and others are developing.

Your next phone—and maybe even the phone or two after that—is unlikely to be a 5G model. The X50 modem uses a flavor of the technology that's Qualcomm's best guess at what the open, international standard will be like once it's finalized sometime in 2018. "It's part of the process to build up the ecosystem," Willenegger says. "Ultimately you don't know everything until you put it to the test, start playing with it in the field." It's close enough, the company thinks, for gadget makers and wireless carriers to start trying out the technology by the second half of 2017.

If all goes as Qualcomm hopes, its chips might go into final products in 2018. 5G probably won't get a wide rollout until 2019 or later, although South Korea is hoping to show off a 5G network during the 2018 Winter Olympics. Of course, Qualcomm will face stiff competition from other chipmakers, such as Intel and Samsung; and it may not have correctly anticipated the final standard. Intel, for its part, is instead providing reprogrammable chips for 5G trials and prototypes. It's waiting before it commits to a chip design, which it told us will be "available to coincide with 5G mobile network deployments."

The complex jiggering of physics principles, government regulations, and corporate interests to enable 5G will remake not just what people can do but how business gets done. The challenges facing nascent 5G technologies even hint at the problems that 6G may someday have to solve.

If you've heard anything about 5G, it's probably the speed figures. Today's best 4G tech, LTE Advanced, is advertised at 225 megabits per second for downloads, and up to one gigabit per second in technology demonstrations. That's pretty astounding, especially since LTE started at a top speed of about 12Mbps back in 2010. A lot of work has been done since then, and 5G codifies and expands those advancements, promising over 10 Gbps.